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Abstract—In this article, we present a deep learning approach to sketch-based shape retrieval that incorporates a few novel techniques to

improve the quality of the retrieval results. First, to address the problem of scarcity of training sketch data, we present a sketch augmentation

method that more closely mimics human sketches compared to simple image transformation. Our method generatesmore sketches from

the existing training data by (i) removing a stroke, (ii) adjusting a stroke, and (iii) rotating the sketch. As such, we generate a large number

of sketch samples for training our neural network. Second, we obtain the 2D renderings of each 3Dmodel in the shape database by

determining the view positions that best depict the 3D shape: i.e., avoiding self-occlusion, showing themost salient features, and following

how a humanwould normally sketch themodel.We use a convolutional neural network (CNN) to learn the best viewing positions of each 3D

model and generates their 2D images for the next step. Third, our method uses a cross-domain learning strategy based on two Siamese

CNNs that pair up sketches and the 2D shape images. A joint Bayesianmeasure is used tomeasure the output similarity from these CNNs

tomaximize inter-class similarity andminimize intra-class similarity. Extensive experiments show that our proposed approach

comprehensively outperformsmany existing state-of-the-art methods.

Index Terms—Sketch-based shape retrieval, convolutional neural network, learning framework, sketch augmentation, best view,

joint Bayesian fusion

Ç

1 INTRODUCTION

SKETCH-BASED shape retrieval allows efficient searching and
retrieving of relevant 3D models from a large 3D model

database, particularly when the models are not annotated.
Sketch-based shape retrieval, however, is a challenging prob-
lem. Retrieval results can be inaccurate for several reasons. A
sketch is often an abstract representation of the model drawn
from a view chosen by the user and is often unpredictably
deviated from the actual shape due to the limited drawing
skill of the user. In contrast to the sketch which is 2D, a shape
is a 3D object and can be complex. Projecting a 3D shape to
different 2D planes can lead to significantly different images
and therefore affecting retrieval accuracy. Furthermore, the
response time for retrieval is important for the practicality of
the approach.

In the last decade, deep learning has achievedgreat success
in image-related tasks. Many researchers, such as Zhu et al.
[13], have proposed full learning-basedmethods that enhance
the robustness of shape retrieval results. Its successes in

sketch-based research, however, is challenged by the lack of
training samples. Currently, in academic circles, one of the
largest sketch datasets is the TU Berlin sketch dataset [1],
which includes a mere 20,000 sketches. In contrast, there are
multiple image datasets with images in the order of millions.
The fact is that images are simpler to acquire with cameras
while acquiring hand-drawn sketches require more human
effort. To improve the effectiveness of deep learning-based
methods on sketch-related tasks, it is crucial to increase the
number of training samples. Existing methods to increase the
number of samples include performing image-based transfor-
mation (scale, translation, and rotation) on a training sample
to generate new samples. However, this transformation does
not sufficiently enrich the sketch samples and have had only
very limited effects on the final retrieval result.

In this paper, we proposed a sketch-augmentation approach
to enrich the training samples for deep learning-based shape
retrieval using sketches as inputs. In addition to increasing
the number of samples, we also ensure the diversity in the
dataset. Diversity is important as significant differences usu-
ally exist between sketches in a dataset and actual hand-
drawn sketches by users. Our approach is to generate new
sketch samples by simulating more hand-drawn sketches.
Instead of using solely image-based transformation, we
remove and perturb strokes in a sketch to generate new
sketch samples. The only image-based transformationwe use
is rotation. Our approach improves the quantity and diver-
sity of training samples and thus improves the robustness of
the model. In addition, for stroke removal, we propose a
novel method for identifying strokes rather than removing
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strokes based on a hypothesis of hand-drawn sketch habits
(Eitz et al. [1] andYu et al. [21]).

In addition, our work in this paper also addressed the
dimensional mismatch between 2D sketches and 3D shape
models. We propose using a convolution neural network
(CNN) to obtain the “best” views of the 3D shapes for match-
ing. Here, the best views refer to views that depict the 3D
shape that avoid self-occlusion and show the most salient
features, following how a human would naturally sketch the
3D shape. Our motivation for this best-view shape approach
is as follows. In sketch-based shape retrieval, projecting a 3D
model onto multiple 2D views is one of the best solutions to
the dimensional mismatch problem between a 2D sketch and
a 3D shape. Projecting the 3D shape into poor views would
adversely affect the retrieval results. In this paper, we learn
the rules of hand-drawn sketches from the sketches them-
selves; then, these rules are employed to predict the shape
projection that is most suitable for retrieval.

Finally, we propose a learning framework that uses Sia-
mese CNNs to complete the retrieval task. The retrieval pro-
cess can be approached as a matching process between
image pairs consisting of the input sketch and every model.
Training Siamese networks (where one network is a sketch
CNN, and the other network is a shape CNN) can improve
the retrieval result considerably. Moreover, we use a joint
Bayesian pipeline to measure the similarity between the out-
put features of the Siamese networks, and we adopt a con-
trastive cost function [33] to evaluate the overall networks.

The remainder of this paper is organized as follows. In
Section 2, we present the related research to sketch-based
shape retrieval. In Section 3, we present our proposed learn-
ing framework and describe it in detail in Section 4. In
Section 5, we present the evaluation of our proposedmethod
to illustrate the feasibility and superiority of the proposed
framework. Finally, conclusions are drawn in Section 6.

2 RELATED WORKS

In this section, we outline the related work in the area of 3D
model retrieval.

Funkhouser et al. [2] proposed a 3Dmodel retrieval engine
that supports switching between 3D and 2D. This model
used the 3D spherical harmonicmethod. Eitz et al. [3] realized
a 2D/3D-based retrieval algorithm using an approach that
combined bag-of-words and HOG models. However, those
methods did not preprocess the sketches before performing
retrieval, whichmay have affected the results due to ambigu-
ous strokes in the input sketches or to sketch errors resulting
from amateur drawing skills expressing the user’s intention
poorly. Therefore, Li et al. [4] proposed performing a prepro-
cessing operation before starting retrieval; the preprocessing
was intended to check user hand-drawn sketch and display a
version of the sketch that most closely alignedwith the user’s
intention.

Dalal et al. [5] proposed using the histogram of gradients
(HOG) descriptor, which captures the edges of gradient
structures that are highly characteristic of local shapes.
Translations and rotations had minimal effects when they
were smaller than the local spatial or orientation bin size.
However, because the HOG descriptor follows a pixel-wise
strategy and because the sketch was sparse by nature, the

sketch representation always produced many zeroes in the
final histogram. Saavedra [6] proposed an improved descrip-
tor for the histograms of edge local orientations (HELO),
which follows a cell-wise strategy; therefore, it seems to be
appropriate for representing sketch-like images. Moreover,
Saavedra [6] proposed soft computation for HELO (S-
HELO), which computes cell orientations in a soft manner
using bilinear and tri-linear interpolation and takes spatial
information into account. Then, themethod computes an ori-
entation histogram using weighted votes from the estimated
cell orientations. Fu et al. [7] also improved the HOGdescrip-
tor with the binary HOG descriptor (BHOG), which is both
faster than the HOG descriptor at computing feature vectors
and requires lessmemory. To enhance the robustness against
noise in sketch images, Chatbri et al. [8] introduced an adap-
tation framework based on scale-space filtering. In this
approach, the sketches are first filtered by a Gaussian filter
to perform smoothing; then, the skeletons of sketches are
extracted. Weiss et al. [9] proposed the spectral hashing algo-
rithm (SHA), which seeks compact binary codes of feature
data and then uses the Hamming distance to measure the
correlations of code words by their semantic similarities. Li
et al. [11] presented a composite features method to conduct
the sketch-based retrieval task.

Recently, deep learning has achieved success when
applied to many computer vision tasks. Specifically, Chopra
et al. [14] presented a Siamese convolution neural network
that used an architecture consisting of two identical sub-
convolutional networks and applied it to aweakly-supervised
metric learning setting. The goal of the networks was to make
the output vectors as similar as possible when the pair of
input vectors were labeled as similar and to make them as
dissimilar as possible when the input vector pair was lab-
eled as dissimilar. Siamese networks have been applied to
text classification [15], speech feature classification [16] and
sketch-based 3D shape retrieval [12]. Recently, cross-domain
convolution neural network approaches, such as training two
Siamese CNNs [12], pyramid cross-domain neural networks
(PCDNNs) [13], deep correlated metric learning (DCML) [31]
and learning barycentric representations of 3D shapes
(LWBR) [32] have been widely adopted for sketch-based
shape retrieval.

The dimension mismatch between shapes (in 3D) and
sketches (in 2D) – how to use 2D view images correctly and
compactly in representing a 3D shape – remains one of the
key problems in sketch-based shape retrieval. Bai et al. [22]
presented a named GIFT descriptor, the GIFT generated
multiview descriptor for 3D shape, which is an index struc-
ture used for multiview matching to achieve fast retrieval.
However, poor view images badly hamper the result of
retrieval; moreover, how to collect the related multiview of a
shape remains a challenging problem. Su et al. [23] proposed
multiview learning methods based on CNN to complete the
sketch-based retrieval; to avoid the best-view-of-shape prob-
lem, it uses many different view images to represent a shape.
An optimization function was presented to obtain the best
result. Shape2Vec [30] has been proposed to solve cross-
modal retrieval problems, such as that encountered in
sketch-based shape retrieval; this approach represents a
novel learning method of semantic-based shape descriptors
from training data. To obtain good view images for a shape,
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it assumes that the shapes in a dataset are consistently
aligned. However, the poses of shapes are indeterminate.

In fact, for shape retrieval, the best view selection is an
important and difficult task. Many researchers, such as
Zhao et al. [20], Liu et al. [21], and Zhou et al. [35], [43], [44],
have proposed a variety of methods to select the best views.
We present an overview of the methods for identifying the
best view of a shape as follows. In previous works, many
researchers have conducted related studies, such as Duta-
gaci et al. [25], who proposed a benchmark for evaluating
best view selection algorithms. The benchmark consists of
the preferred views of 68 3D models provided by 26 human
subjects. The evaluation methods include the view area,
ratio of visible area [27], surface area entropy [28], silhouette
length [27], silhouette entropy [29], curvature entropy [29],
and mesh saliency [26]. No method is capable of yielding
good results for all models; each is suitable only for certain
types of models. Additionally, Zhao et al. [20] presented a
study of the best view of a shape from sketch contours
based on a support vector machine (SVM). Meanwhile,
Zhou et al. [35] proposed to acquire the best view of a shape
by learning standard sketches styles using multilayers per-
ceptrons (MLP), through which better performance com-
pared to the aforementioned methods can be obtained.
Relative to other existing methods that can solve the prob-
lem involving dimensional mismatch between sketches and
shapes, the biggest advantage of using the best view for a
shape to represent the 3D shape is faster retrieval and better
retrieval accuracy, regardless of the pose of the shapes.

Following earlier studies, great attention has consistently
been paid to data augmentation techniques, above all, in
sketch recognition [19] and image classification [38]. There
are many excellent research studies in the literature, such as
Li et al. [37], Jia et al. [39], Antoniou et al. [40], Daniel et al. [41]
and Cubuk et al. [42]. In general, good results can always be

obtained by thesemethods in their respective domains; how-
ever, in sketch-based shape retrieval, there exist obvious
dimensional discrepancies between sketches and models
and smaller intra-class distance between numerous models
or sketches. Therefore, for this kind of data augmentation,
stringent requirements must be met: Sketch augmentation
must carefully preserve tiny discrepancies that exist in intra-
class models. Otherwise, these incorrect samples (i.e., aug-
mented sketches) would lead to worse retrieval results.

3 PROPOSED FRAMEWORK

Fig. 1 shows an overview of our proposed method, which
consists of three main stages: (i) sketch augmentation, where
we apply three different types of deformation to increase the
number of the sample sketches; (ii) projecting a 3D shape to a
2D view, where we use a CNN-based learning method to
identify the best views for the shape; and (iii) shape retrieval
using Siamese CNNs and joint Bayesian fusion, where the
CNNs use cross-domain learning and learn the similarity
between the sketches and the best-projected views of the
shapes and joint Bayesian fusion scheme [18] measures the
similarity between the output features of the Siamese net-
works. The joint Bayesian fusion was first proposed to
address face verification and was applied by Yu et al. [19] to
sketch recognitionwith excellent results.

The details of our proposed framework are presented in
the following section.

4 FRAMEWORK DESCRIPTION

In this section, we present the details of our proposed frame-
work. The proposed framework can be divided into three
main parts: sketch augmentation, finding the best views for a
shape, and similarity ranking using Siamese networks based

Fig. 1. Overview of the proposed framework. The figure above the dotted line shows the sketch augmentationmethod used to createmore samples, the
projection used to obtain the best view of a shape based on learning the semantics of a hand-sketch, and the training of Siamese networks for shape
retrieval; The figure below the dotted line shows how the trained Siamese networks are used in a shape retrieval task to rank the retrieved shapes.
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on the joint Bayesian fusion scheme. All the CNN networks
used in this paper are based on the AlexNet CNN [10].

4.1 Sketch Augmentation Approach

Ideally, sketch augmentation should have minimal effect on
the sketch content but still increase the number of sketches in
the training dataset. Yu et al. [19] have shown that doing so
can improve sketch recognition performance. However, their
approach for obtaining the strokes of a sketch is based on an
assumption concerning hand-drawn sketch habits (Eitz
et al. [1]), which assumes that a sketch is initially drawn from
an outer-to-inner direction using long strokes to depict the
overall contour of the shape, followed by providing details
using short strokes. This assumption has a few drawbacks:
First, human drawing habits are diverse, and obtaining
strokes based on the assumption sometimes leads to incor-
rect results. Second, since a stroke represented the basic con-
tour of a sketch, the number of strokes was relatively fewer,
thereby limiting the degree to which relevant sketch aug-
mentation could be conducted, for instance, via stroke
removal or local stroke deformation. As a result, Yu et al. [19]
approach fails to obtain good results for sketch-based shape
retrieval. Sketch-based shape retrieval is a more complex
task as there exist bigger intra-class differences but smaller
inter-class differences in the samples.

How can one correctly and efficiently augment the
sketches? Intuitively, according to human drawing habits,
people seldom focus on the key-points of strokes when they
are sketching. Thus, stroke removal based on the assumption
above can lead to significant change to the sketch. For intra-
class sketches, small differences can potentially be uninten-
tionally erased. In this case, extensive incorrect samples (i.e.,
incorrectly augmented sketches) are may be generated and
used for training the proposed learning framework, result-
ing inwrong retrieval results.

In contrast, in this paper, we propose a novel method to
obtain the strokes of a sketch based on image features, such
as Harris key-points. Our main objective is to obtain enough
additional strokes in a sketch to be able to more accurately
describe the key features of the shape in the sketch. Our
sketch augmentation method relies on the insights that
hand-drawn sketches are rarely identical to the contours of
a model projection and often focus on local content details.
The accuracy of the sketch in depicting a shape can vary
between users. Thus, our sketch augmentation method is
based on three deformations: stroke removal, local deforma-
tion via stroke perturbation, and global deformation via and
re-orientation.

4.1.1 Stroke-Removal Deformation

Here, we present the process for stroke-removal deformation.
Given a sketch si, we first conduct an edge-thinning oper-

ation and then apply gradient orientation to each pixel in the
lines using the Sobel descriptor. In this manner, every pixel p
in each line has an edge orientation tp. All the lines in a
sketch are uniformly sampled to obtain the related pixel
seeds. The stroke set G ¼ fg1; . . . ; gng is acquired using a
simple greedy approach that continually combines eight
connected pixels from each seed until the sum of their orien-
tation differences exceeds a threshold (p=2). For every initial

stroke gi, we denote its mean position as xi and its mean ori-
entation as ti. Zitnick et al. [24] proposed an edge-affinity
metric relationship between two edges. Therefore, we can
measure two strokes gi; gj as follows:

Oðgi; gjÞ ¼ jð cos ti � cos tijÞ � ð cos tj � cos tijÞj2; (1)

where tij represents the angle between xi and xj. When
Oðgi; gjÞ < d, the strokes gi and gj can be merged. In this
paper, we set this threshold to d ¼ 0:8 through experimenta-
tion. Then, we repeatedly apply Equation 1 to obtain the
final stroke set G.

We employ the Harris corner descriptor [36] to evaluate
the importance of every stroke in the stroke set G. Given a
sketch sx, we can easily collect its Harris key points. Conse-
quently, it is not difficult to observe that these key points are
distributed non-uniformly across many different smooth
curve strokes Gx. Therefore, some of the unimportant strokes
can be removed, generating a new sketch. To finish, we
obtain a stroke set Gx based on Equation (1).

To remove the strokes, given a sketch sx that consists of a
set of n strokes Gx ¼ fi 2 njgig, we measure the importance
of every stroke gi by considering the number of keypoints it
contains and its length. For example, to measure the impor-
tance of the ith stroke gi, the metric equation is as follows:

IðgiÞ ¼
ea�countðkiÞ=eb�liPn
i¼0 ea�countðkiÞ=eb�li

; (2)

where ki and li represent a set of Harris keypoints and the
length of the ith stroke gi, respectively (the number of key-
points in thewhole sketch si being denoted as countðKÞ ¼m).
Moreover, a and b are two thresholds to adjust the size of
ecountðkiÞ and eli , respectively, so that the formula ecountðkiÞ=eli is
meaningful (i.e., if ecountðkiÞ=eli ¼ 1, then IðgiÞ is meaning-
less). In this paper, for a sketch si, assuming that its size is
x� y and that the number of strokes in its stroke set Gi is
jGij ¼ n, we set a ¼ n

m and b ¼ n
minðx;yÞ. Additionally, the func-

tion countð�Þ returns the size of the set ki. Therefore, using

Equation (2), we can remove a stroke gx with a value smaller

than IðgxÞ to generate a new sketch. This approach greatly
increases the number of available sketch samples for training.

The entire stroke-removal deformation process is shown in

Fig. 2.

4.1.2 Local Deformation

The local deformation step is relatively easy to understand.
We first collect some keypoints on a sketch sx based on Har-
ris corner keypoints. Here, we let K ¼ f0 � i � m� 1jkig
represent the keypoint set from a stroke set Gx. The local

Fig. 2. An overview of the stroke-removing deformation.
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deformation is based on spline interpolation, in which a key-
point ki can be viewed as a control point. The cubic spline
curves gi (0 � x � 1) are represented as in

giðxÞ ¼ ð1� xÞ3k0 þ 3ð1� xÞ2xk1 þ 3ð1� xÞx2k2 þ x3k3;

(3)

where k0 and k3 are the two endpoints of each stroke (i.e., a
spline curve). To obtain a new sketch, we move the keypoint
ki in each stroke gi. Assuming that ki is the key-point of the
ith stroke gi, 8ki 2 K, the new position k

0
i of ki can be repre-

sented as follows:

k
0
i ¼ ki þ J � e

� 1
2s2 ; (4)

where J is an identity matrix. In our work, we set s to 0.1.
Completing the local deformations in this manner results in
many different sketches. In practice, when people sketch the
same shape repeatedly, there are always local deformations.
Fig. 3 shows an overview of the local deformation process.

4.1.3 Global Deformation

Global deformation is performed to facilitate sketch rotation
operations. We first obtain a pivot position pc for the entire
ith sketch si. For every pixel px in sketch si (i.e., 8px 2 si) after
the rotation operation, the new position of pixel pnew is given
by:

pnew ¼ cos u � sin u
sin u cos u

� �
� pc þ px; (5)

where we set � p
6 � u � p

6 to ensure that the overall orienta-
tion of the sketch remains.

4.2 Finding The Best View of a Shape

We project the 3D data into many different 2D images to
eliminate the dimension mismatch problem between the
shape and a sketch. However, determining which views bet-
ter depict the shape is still a tricky problem. Determining the
view positions that cover the full 3D model is a critical prob-
lem to solve. To this end, we present a learning-based
method to identify the best view of a shape.

While the sketches from the dataset can be viewed as a
good or even the best view of a shape, the so-called best shape
view should better fit the habits of people drawing sketches
by hand. Therefore, obtaining the best view of a shape should
depend more on learning from hand-drawn sketches rather
than on the geometrical features of the models (e.g., Dutagaci
et al. [25]).

In our approach, we apply suggestive contours [3] to com-
plete this task. Suggestive contours can be used to project
many view images from different viewpoints. We use CNN
to both extract features and make classifications to solve the
learning problem. Themain steps are elaborated below.

Obtain Multiview Images. We can project every model Mi

into n view images Vj ¼ fv0j ; v1j ; . . . ; vðn�1Þj g from different

viewpoints. In this paper, we set n ¼ 400.

Obtain Features. Several datasets include manymodels and
the corresponding sketches, for instance, the SHREC’13 [17]
and SHREC’14 [33] datasets. To obtain the relationship
between the shape views and sketches, we perform CNN-
based learning tasks to facilitate discriminative training using
a similarity metric. The input sizes of the sketches and views
should be identical to enable their relationships to be easily
measured after extracting features using CNN.

Similarity Metric. We acquire the feature vectors of views
and sketches using the pretrained CNN. Note that we use a
pretrained CNN so that we can obtain more accurate fea-
tures. A pretrained AlexNet is included in TensorFlow. For
random sketch and view images, via this CNN, their feature
vector sizes are identical; therefore, we compare the view
features with the sketch features to build a similarity rela-
tion. Here, we adopt the approach proposed by Chopra
et al. [14], as also adopted by Wang et al. [12]. We also pro-
pose a discriminative loss function that drives the system to
make the correct decision. The similarity metric equation is
as follows:

Dðski ; vtj;vÞ ¼ v� hD2
w þ ð1� vÞ � ’emDw; (6)

where v is a binary similarity label, i.e., v ¼ 1 or v ¼ 0. In
this paper, v can only be 1 because ski and vtj must be
deemed similar, i.e., they are from a pair. The function Dw

represents the Manhattan distance between the feature vec-
tors of the sample ski and vtj. We follow Chopra et al. [14]
and set the constant parameters h and ’ to 5 and 0.1,
respectively.

Obtaining Positive and Negative Samples. The related sam-
ples are generated through the discriminative loss function
to classify the feature vectors of sketches and views. In par-
ticular, to obtain the positive view images and negative
view images for the kth view image vki projected from the
ith model Mi and each sketch stj (8stj 2 Sj) from the same
category SjðjSjj ¼ N), we define a function 0 < pð�Þ � 1 to
determine whether the view image vki is a positive sample:

pðvki Þ ¼
Dðvki ; stj; 1Þ �min0�t�NDðvki ; stj; 1Þ

max0�t�NDðvki ; stj; 1Þ
; (7)

where N is the number of samples. Because there are 80
sketches in each category in the dataset, using the above
sketch augmentation method, we can obtain more sketches
in each category. In this paper, we set N ¼ 800. Equation (7)
determines whether a sample vki is positive.

To obtain negative samples to train our CNN network,
we must define the decision function Q to automatically
determine whether the input sample (vki ) is negative or posi-
tive. This decision function is shown in:

Fig. 3. Overview of the sketch local deformation process.
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Qðvki Þ ¼
1 if 9stj 2 Si; pðvki Þ � 0:95

0 if 8stj 2 Si; pðvki Þ � 0:05
null otherwise

8<
: : (8)

Based on Equation (8), we can obtain many different pos-
itive and negative samples. Then, the features extracted
from the positive samples by CNN are the positive features
and vice versa. Overall, we generated one million features
from many positive and negative samples.

Training the CNN to Perform Classification. By following
the steps described above, we obtain many different posi-
tive and negative samples. Next, we need to conduct train-
ing to fit the related parameters. We only need to determine
whether a view image is good or bad among the many
different view images; then, we remove the bad images.
Therefore, the goal is to train a binary classifier to classify
the related view images. Previously, the pretrained CNN
was used to extract features, but the parameters must be
retrained to provide a correct prediction when CNN is used
to determine whether a view image is good. This new CNN
has a learning rate of h ¼ 0:001 and an added softmax func-
tion after the last layer of the CNN network that computes
the scores of the two perceptrons of the output layer (with
one perceptron being used to output good samples and the
other being used to output bad samples). The final output
of this classification CNN depends on which perceptron has
the highest score.

Predicting & View Ranking. At the testing stage, based on
the network trained as described above, we can predict the
label of every view image projected by the same model
because the best view images are always selected as those
with the highest scores. However, to preserve the diversity
of the final result, we need to conduct view ranking.

For a 3D shapeMi, we assume that we can obtain its rele-
vant good view images set Vi based on preceding network
predication. Furthermore, to keep the diversity of best view
images, we need to further measure their relationship.
These view images projected by nearby positions are often
very similar. If we directly rank these view images accord-
ing to their predication scores, obviously, we maybe gain
many similar view images. It is meaningless for many simi-
lar best view images to be collected for training in the next
step; it is also very time-consuming. Therefore, we attempt
to avoid the situation by not generating multiple view
images projecting from nearby positions that are similar to
each other, to increase the diversity of the projected best
view images. The sketches drawn by users are often diverse;
for instance, when people sketch to represent a 3D desk,
they may draw it from the front side or a lateral side. Thus,
for 3D shape retrieval, we have to consider the diversity of
input sketches as well.

Consider the diversity, the IoU (Intersection of Union) cri-
terion is utilized to evaluate the relationship of these view
images, including those projected from nearby positions.
More specifically, to increase diversity, we penalize images
with similar views and reduce their scores. To accomplish
this, Equation 9 is employed to change their original
scores:

tiðvki Þ ¼ siðvki Þ þC max
vw
i
6¼vk

i
vw
i
2Vi IOUsðvki ; vwi Þ

� �
; (9)

where the functionC is a monotonically decreasing function
that penalizes similar views. The functionC is given by:

CðxÞ ¼ e�
x2

2s; (10)

where s is an experimental value that controls the penalty.
In this paper, we set s ¼ 0:15. An overview of our proposed
method is shown in Fig. 4.

Finally, a mean-shift algorithm is used to rank the scores
of every view image; in this way, the best view for a shape
can be obtained. In this paper, to preserve the diversity for
every shape, the number of best views of a shape is set to 3,
i.e., we collect the top 3 view images as the best view images
for a shape in the final ranked list; more details on view
ranking are shown in Algorithm 1.

Algorithm 1. View Ranking Algorithm

Input: The good view images set Vi , n
Output: The best view set T , which includes the n best view

images of 3D shapeMi

Initialize: T  ;
For all vci 2 Vi do
Computing score tc of v

c
i (Equation 9)

End for
while Vi 6¼ ; do
Obtaining the toppest score t ¼ maxj2 Vij jtj
Based on t, getting the corresponding v
Starting from v, according to mean-shift algorithm,
acquiring the candidate vcan
if vcan =2 T then
Vi  Vi � vcan
T  T þ vcan

else
repeat

end
if T is not changed or Tj j equals to n then
Iteration over
return T

else
repeat

end
end

4.3 Siamese Networks for Shape Retrieval

4.3.1 CNN Architecture

In this section, we present the architecture of the CNNs
used for shape retrieval. The task is to extract feature vec-
tors from the best view images and sketches. Therefore, we
use Siamese networks, and we use the same design for both
networks, even though they are trained separately. The size
of the input patch is 100� 100 for both sources. Each CNN
has five convolutional layers, three max pooling layers, and
three fully connected layers to generate the features.

The first convolutional layer follows a 3� 3 pooling layer
generating 96 response maps, each pooled to a size of 3� 3.
The 256 features generated by the final pooling operation are
linearly transformed to 1000� 1 features in the last fully con-
nected layer. In the learning pipeline for obtaining the best
view of a shape, the softmax function is used in the output
layer to obtain a binary classification result. However, in the
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Siamese learning pipeline for sketch-based retrieval, the joint
Bayesian function is utilized to output the final binary classifi-
cation result. Additionally, a rectified linear unit (ReLU) is
used in all the layers. To train the samples, we employ a learn-
ing rate of h ¼ 0:005. SGD with mini-batch, the RMS opti-
mizer, and the cross-entropy cost function are also utilized.

4.3.2 Joint Bayesian

Chen et al. [18] proposed a joint Bayesian approach to test
and verify face features and reduce the separability between
classes. Furthermore, Yu et al. [19] adopted this method for
sketch recognition tasks. In this paper, we also adopt this
method to measure the interclass relations as follows:

rðx1; x2Þ ¼ log
P ðx1; x2jHIÞ
P ðx1; x2jHEÞ ¼ xT

1Ax1 þ xT
2Ax2 � 2xT

1Gx2;

(11)
where the terms HI;HE represent the hypotheses that the
terms x1; x2 belong to intra-class and inter-class relations,
respectively. Moreover, the vector x1 represents the sketch
features, and the vector x2 represents the model features. Let
each x1 represent the 1000� 1 ¼ 1000D concatenated feature
vector from our network ensemble. The terms A and G
are two negative semidefinite matrices. Simply, they can be
represented as follows.

A ¼ ðCm þ C�Þ�1 � Cm þ C�

ð2� Cm þ C�Þ2
(12)

G ¼ � Cm

ð2� Cm þ C�Þ2
; (13)

where x1; x2 belongs to intra-class, the term C� ¼ 0, Cm is the
covariance between x1 and x2, and vice versa. if A ¼ G,
Equation (11) becomes a metric of Mahalanobis distance.
Therefore, in essence, joint Bayesian metric is an improved
Mahalanobis distance based on the intra-class hypothesis.

Finally, we train the joint Bayesian model, thus learning a
good metric that exploits the intra-ensemble correlations.
Note that when using this approach, each feature dimension
is fused, implicitly giving more weight to the more impor-
tant features as well as finding the optimal combination of
different features from different models.

4.3.3 Training Networks for Shape Retrieval

In a learning method, the training samples are a critical
component. Our goals in training the Siamese networks are
as follows: fitting the parameters of the Siamese networks
and determining the parameters (i.e., the matrix A;G). The
input to the Siamese networks should be a pair of samples
consisting of a sketch and a best view image. The training
process is as follows.

1) Create pairs: We need to create pairs consisting of
every sketch and every best view image for the Sia-
mese networks. A positive pair (i.e., a sketch and a
best view image are from the same category) can be
viewed as a positive sample and vice versa. Using
this approach, a pair is created for every deformed
sketch and every best view image.

2) Determine the parameters of the joint Bayesian pipeline:
Initially, we can utilize these pairs to determine the
parameters of the joint Bayesian pipeline. In this way,

Fig. 4. The overview of the proposed best view method for shapes based on CNNs. The whole pipeline can be divided into two parts, i.e., the training
stage and the test stage. The training stage consists of making pairs between sketches and models, collecting related positive and negative samples
through the utilization of feature selection based on CNNs with pretraining and training our CNNs using positive and negative samples. In the test
stage, we depend on the trained CNNs to predict the good and bad view images. Finally, we propose a rank algorithm to acquire the best view based
on view image diversity.
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we can obtain the scores of every perceptron of the
output layers of the pretrained Siamese networks.
The network parameters can be confirmed by training
using these samples.

3) Fit the parameters of Siamese networks: Intuitively, the
cross-entropy cost function is used to measure the
difference between the predicted and actual values.
Utilizing the RMS optimizer to obtain the mini-
mum of the cost function across the entire network,
we can consistently fit the parameters of the net-
works. Using this approach, we can complete the
training task to obtain the parameters of the Sia-
mese networks.

Finally, the Siamese CNN networks with trained param-
eters are obtained. An overview of the training samples
based on the joint Bayesian model is shown in Fig. 5.

4.3.4 Testing for Shape Retrieval

In the above section, by training the Siamese networks, we
obtain the Siamese networks with parameters and the joint
Bayesian model with parameters. For the Siamese network,
completing a retrieval task involves performing N predic-
tion operations (where N is the number of best view images
in the retrieval dataset). In general, the number of models in
the dataset is smaller than the number of best view images
(with every model having at least two best view images).
The whole sketch-based retrieval process based on Siamese
networks is as follows:

1) Make pairs: An input sketch sx must be paired with
its N best view images, forming N pairs P (jP j ¼ N),
which are the input to the Siamese network.

2) Obtain the retrieval result: Initially, the retrieval result
setR should be null. Intuitively, the Siamese network
predicts each pair; the result is a label value. When
the label value is positive (i.e., 1), the model corre-
sponding to that best view image becomes a retrieval
result. More specifically, 8 pairs pj ¼ ðsx; vki Þ; 0 �
j � N � 1, let the model corresponding to the view
image vki be Mi. If argmaxðrðFsx ; Fvk

i
ÞÞ ¼ 1, then

model Mi is added to the retrieval result (i.e.,
Mi�!R). Similar operations on allN pairs completes
the above operation, and we achieve the final
retrieval resultR.

3) Rank the retrieval results: Better retrieval results should
be placed in a better position. Therefore, a ranking
operation is required. In this paper, the output value
of the joint Bayesian pipeline is used as a sort criterion
(i.e., 8Mx 2 R, when the model Mx has 2 � K � 5
best view images Vi ¼ f0 � k � K � 1jvki g, the rank
scoreXðMiÞ ofmodelMi is as in:

XðMiÞ ¼ max
0�k�K�1

rðFsx ; Fvk
i
Þ; (14)

where F is the sketch or the view image feature vec-
tor. The function rð�Þ is shown in Equation (11).

An overview of the proposed method is shown in Fig. 6.

5 EVALUATION

In this section, we present the validation and evaluation
results of our proposed framework. We performed these
evaluations on the SHREC’13 dataset [17], one of the most
well known 3Dmodel datasets and includes all the TU Berlin

Fig. 5. Overview of the training samples based on the joint Bayesian model. First, the proposed sketch augmentation method can provide more sam-
ples to train the networks. Second, based on hand-sketch inherent semantics, the best views of a shape can be obtained using CNN as a classifier.
Third, by utilizing the assignment of pairs between sketches and best views, these pairs are treated as samples with which to train our Siamese net-
works. These samples include positive and negative pairs, i.e., for every positive and negative pair, its two members are from the same and different
categories, respectively.
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dataset sketches [1], as well as the SHREC’14 dataset [34],
which includesmore sketches and 3Dmodels.

The proposed framework was implemented using the C+
+ and Python 3.6 and was executed on a PC running Win-
dows 10, an Intel Core I7-7700HQ CPU, 8 GB of memory
and an NVIDIA GeForce GTX 1060 GPU. Moreover, Google
TensorFlow, a popular open-source framework for deep
learning was used in this study.

5.1 Best View of a 3D Shape

In this section, we report on the experiments used to validate
our learning method to obtain the best view of a 3D shape.
Existing methods to obtain the best view of a 3D shape
includes SVM-based learning methods [20] and web-image-
driven methods [21]. The AUC (Area Under the Receiver
Operating Characteristic (ROC) Curve) indicator, which com-
putes the area under the precision-recall curve for a retrieval
result, was applied to evaluate the retrieval performance. A
comparison of our proposed method with other tested meth-
ods is shown in Fig. 7.

Fig. 7 shows that our method is superior to the other
methods. This result can be explained as follows. Poor view
images adversely affect the retrieval results. Methods such
as those of Polonsky et al. [27], Vazquez et al. [28], Page
et al. [29], and Lee et al. [26] obtain the best views of a shape
considering saliency and entropy but do not match to the
goal of sketch-based shape retrieval, where the best view is
one that is most consistent with the habits of users drawing
sketches by hand. Therefore, a learning approach performs
better at this task. In practice, the number of collected best
views of a 3D shape is often less than 15. In this case, the
results of our method and those of SVM-based learning
methods are highly similar.

To further validate the importance of the proposed best-
view approach, we perform an experiment whereby we
remove the best-view approach from our proposed frame-
work. We substitute it with a multiple views method where
we uniformly sample view images from different view-
points along the bounding sphere of the 3D shape to repre-
sent the shape. As there are millions of different 3D shapes
whose poses are almost always unpredictable, it is a chal-
lenge to determine how many view images would suffice to
meet the requirements of the retrieval system. Having more
view images also increases the computational load, leading
to long waiting time for users who interact with the retrieval
system.

Fig. 8 compares the time consumed to retrieve the match-
ing 3D shapes from the two datasets used when we use our
best view approach versus the multiviews approach. We
see that with multiviews approach, the time needed to com-
plete the retrieval greatly increase for both of SHREC’13
and SHREC’14 datasets. Moreover, because the size of
SHREC’14 is larger, more time is spent achieving a single
retrieval.

Fig. 9 shows the average number of view images required
to yield the required precision of the retrieval. With multi-
views approach, We need close to an average of 100 views

Fig. 6. An overview of shape retrieval based on our proposed framework. First, by utilizing trained Siamese networks for an input sketch, we pair up
the sketch and all the best views of the shapes in the dataset. Each pair, based on the Siamese network, was treated as a sample to predict whether
they were similar. Assuming that they are deemed similar, the best view of a shape can be put into a retrieval result set (denoted as a yellow cube in
the figure). Finally, based on the value of the joint Bayesian model, a rank algorithm is completed to obtain the final retrieval result (represented as a
blue cube in the figure).

Fig. 7. AUC comparison of our proposed method and other tested
methods.
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per shape to reach a precision of 0.9. On the other hand, our
approach selects the best views for matching and does not
require a large number of views.

5.2 Sketch-Based Retrieval

In this section, we use the SHREC’13 benchmark [17] to eval-
uate our method. We also show the retrieval results within
the same domain. Furthermore, we utilize the relations
between models and sketches in SHREC’13 to train our net-
work and the fusion model. Our CNN is based on Alex-
Net [10], which was initially designed to classify images. All
the sketches in the dataset have been resampled to a size of
100� 100 using the Python PIL library. To avoid overfitting,
we use regularization. In addition, we divide the dataset into
a training set (70 percent) and a test set (30 percent).

We present the evaluation results on the SHREC’13 data-
set in this section. First, we compare the precision-recall
curves of our method to the state-of-the-art methods, which
include Saavedra (HOG SIL) [17], Li (SBR VC-NUM-
100) [17], Furuya et al. [17], MVCNN (Su et al.) [23] and
Wang (Siamese) et al. [12]. The results are shown in Fig. 10
for the SHREC’13 dataset.

In addition, to emphasize the advantages of our method,
we perform related experiments using six different criteria:
Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-
Measure (E), Discounted Cumulative Gain(DCG), and
Average Precision (AP). The results are listed in Tables 1
and 2.

We also compare our method with the state-of-the-art
methods using the SHREC’14 dataset [34] against Saavedra
(HOG SIL) [17], Li (SBR VC-NUM-100) [17], Furuya et al.
[17], Wang et al. (Siamese) [12], Dai et al. (DCML) [31] and
Xie et al. [32]. The results are shown in Fig. 11.

Fig. 11 shows that our proposed method is better than the
others. In particular, our method achieves much better pre-
cision when recall approaches 1.

Meanwhile, in Fig. 12, poor performance is shown for our
method based on the Euclidean distance. The reason is that
the Euclidean distance equates the differences between the
different attributes of the sample. This ignores the key effect
that the great gaps within a category have on the final result.

Fig. 8. Avg. retrieval time comparison on the SHREC’13 and SHREC’14
datasets in the retrieval test stage, once the retrieval procedure is
completed.

Fig. 9. Comparison of the avg. number of view images required to yield
relevant precision for the SHREC’13 dataset.

Fig. 10. Performance comparison on the SHREC’13 dataset based on
the PR criterion.

TABLE 1
Comparisons on the SHREC’13 Dataset Based on 6 Criteria

Criterion
Methods

NN FT ST E DCG AP

Saavedra [17] 0.11 0.06 0.1 0.06 0.3 0.08
Li et al. [17] 0.16 0.09 0.14 0.08 0.34 0.11
Furuya et al. [17] 0.27 0.2 0.29 0.16 0.45 0.25
Wang et al. [13] 0.4 0.4 0.55 0.28 0.6 0.46
Ours 0.68 0.63 0.73 0.42 0.72 0.7

TABLE 2
Comparisons on the SHREC’14 Dataset Based on 6 Indicators

Criterion
Methods

NN FT ST E DCG AP

Saavedra [17] 0.08 0.045 0.06 0.03 0.28 0.04
Li et al. [17] 0.09 0.05 0.08 0.03 0.3 0.05
Furuya et al. [17] 0.1 0.05 0.08 0.04 0.32 0.05
Wang et al. [13] 0.23 0.2 0.3 0.15 0.5 0.22
Ours 0.34 0.377 0.431 0.205 0.504 0.31
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Therefore, joint Bayesian approach is obviously an essential
part among our proposed learning framework.

5.3 Sketch Augmentation

To understand the impact of sketch augmentation, we com-
pare the results of our method with and without sketch aug-
mentation. This experiment also uses the SHREC’13 dataset.
The final results are shown in Fig. 13. It shows that with
sketch augmentation, we can achieve up to 0.1 higher in
precision.

To further validate our analysis on sketch augmentation,
we replace our sketch augmentation method with that used
by Yu et al. [19] and perform retrievals on the SHREC’13 data-
set. The experiment effectively verifies the poor performance
of retrieval on intra-class models while supporting our analy-
sis. We complete the shape retrieval task only for these mod-
els that come from the same class. We collected 100 models
and their related sketches from the SHREC’13 dataset. In fact,
for these models, incorrect retrieval result is likely to occur,
even for our proposed framework, because they are too simi-
lar, as exemplified by shark and dolphinmodels.

The result is shown as Fig. 14. For every method, in gen-
eral, the overall performance becomesworse, nomatterwhich
method is adopted to achieve this special retrieval task. Nev-
ertheless, our sketch augmentation is relatively superior to
others. In particular, Yu et al.method yield the worst result as
the few intra-class differences that exist for these models
seem to be removed. Following the stroke-removal operation,

these incorrect samples are used to train our learning frame-
work, leading to theworst retrieval performance.

5.4 Limitations

We conducted additional experiments on the SHREC’13
dataset. The results (see Fig. 15) show that when retrieved
objects have similar shapes and differ only in detail, some
incorrect retrieval results still occur. For instance, the dol-
phin model and the shark model have similar shapes. More-
over, when the input object is a subcomponent or a part of
an object, such as a tire, incorrect retrievals can also occur.

Why do these conditions generate incorrect retrieval
results? We believe one key reason is the quality of the learn-
ing samples. In this paper, we placed greater emphasis on
pursuing a large number of samples rather than on assessing
the quality of the samples. In the future, we plan to design a
scheme to remove poor samples and propose a feasible
approach or indicator to evaluate and measure these aug-
mented sketches on whether they are qualified to be a train-
ing sample and therefore reduces incorrect retrieval results.

6 CONCLUSION

In this paper, we proposed a novel learning framework for
conducting sketch-based shape retrieval. To obtain suffi-
cient large-scale learning samples, we presented a novel

Fig. 11. Performance comparisons on the SHREC’14 dataset.

Fig. 13. Comparisons of sketch-based retrieval with and without sketch
augmentation on the SHREC’13 dataset.

Fig. 12. Comparisons of sketch-based retrieval with and without the joint
Bayesian approach on the SHREC’13 dataset.

Fig. 14. Performance comparison of retrieval results based on collected
intraclass models (SHREC’13).
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sketch augmentation approach to increase the diversity
and the number of the samples. In addition, we proposed
a new learning-based method to identify the best views of
a shape that determines the view positions that best cover
the full 3D model for retrieval. Additionally, we used a
Siamese CNN to learn from these samples toward the aim
of retrieving better results and a joint Bayesian pipeline to
measure the similarity between the output features of
the Siamese networks. Using these combined techniques,
we improve the performance of the final retrieval sys-
tem. The extensive experiments showed that our pro-
posed framework is comprehensively superior and more
robust than existing state-of-the-art sketch-based shape
retrieval approaches.

However, several problems remain in our proposed frame-
work. For example, the learning approach for finding the best
view of a 3D shape depends too heavily on the samples; when
the learning samples are lacking, our approach makes it very
difficult to obtain good results. Moreover, there exist many
incorrectly augmented sketches that utilize training, but we
lack an effective approach by which to measure whether these
samples are suitable for use in the learning framework.

Considering the existing problems in our framework
described above, in the future, we plan to further improve
the performance of our method by employing more com-
plex networks, such as Google-Net. Recently, end-to-end
methods have attracted greater attention; it is necessary to
devise a better scheme to minimize the discrepancies
between sketches and models. Moreover, it is very impera-
tive and urgent that a feasible metric criterion is designed to
evaluate these augmented sketches to avoid these poten-
tially unqualified samples from exerting negative effects on
final retrieval results.
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